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Abstract. Let K be an imaginary quadratic field and f an integral ideal.
Denote by Cl(f) the ray class group of f. For every non-trivial character χ
of Cl(f), we show that L(1,χ)/π is transcendental. If f = f, then complex

conjugation acts on the character group of Cl(f). Denoting by Ĉl(f)
+

the
orbits of the group of characters, we show that the values L(1,χ) as χ ranges

over elements of Ĉl(f)
+

are linearly independent over Q. We give applications
of this result to the study of transcendental values of Petersson inner products
and certain special values of Artin L-series attached to dihedral extensions.

1. Introduction

Let K be an imaginary quadratic field with discriminant dK and ring of integers
OK . Let f be an integral ideal of OK and denote by Cl(f) the ray class group of OK

(mod f), with Kf the corresponding ray class field over K. By class field theory,
there is a natural isomorphism

σ : Cl(f)
∼−→ Gal(Kf/K)

induced by the Artin symbol. For each non-trivial character χ of Cl(f), the Hecke
L-series L(s,χ) extends to an entire function. In this paper, we will investigate the
transcendental nature of the numbers L(1,χ) as χ ranges over non-trivial characters
of Cl(f).

We first consider the case f = f ̸= OK . The case when f = OK was dealt with
in our earlier paper [3] using different techniques. In this situation also, complex
conjugation acts on the ray class group and on the group of ideal class characters.

We denote by Cl(f)+ and Ĉl(f)
+
, respectively, a set of orbit representatives under

this action.
Our main theorem is

Theorem 1. Let K be an imaginary quadratic field and let f be an integral ideal
of OK unequal to 1 satisfying f = f. As χ ranges over non-trivial Hecke characters

of Ĉl(f)
+
, the special values L(1,χ) are linearly independent over Q.
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Given a map f : Cl(f) → C, we can define the L-series

L(s, f) =
∑

a

f(a)

N(a)s
.

As in [3], one can show that this extends to an entire function if and only if

(1) ρf :=
∑

R∈Cl(f)

f(R) = 0.

In this setting, we can speak of the value L(1, f) and discuss its nature. The
consideration of this series can be thought of as the K-analogue of the L-series
introduced by Chowla [2] for the rational number field case (to be discussed in
detail below). Since any such function f can be written as a linear combination
of characters of Cl(f) and condition (1) implies that only non-trivial characters are
involved, it is immediate that we have the following corollary.

Corollary 2. Assume that f = f ̸= OK . Let f : Cl(f) → Q be an algebraic
valued map not identically zero. Suppose that ρf = 0. Then L(1, f) ̸= 0 unless
f(R) + f(R−1) = 0 for every ideal class R ∈ Cl(f).

As remarked above, in an earlier paper [3], we discussed the case f = 1 and
proved that the special values L(1,χ) are linearly independent over Q as χ ranges
over the non-trivial characters of the ideal class group (modulo the action of complex
conjugation). The case when f ̸= 1 requires a different treatment than the one used
in [3] since the methods there do not directly lead to the results of this paper. The
situation when f ̸= f is one we relegate to a future paper. However, some of the
methods of this paper can be applied to give some information in the general case
too. Here are a few results in this direction.

Theorem 3. The special values L(1,χ)/π are transcendental as χ ranges over non-

trivial characters of Ĉl(f)
+
. Moreover, in the case that f = f, there is at most one

algebraic number in the list L(1,χ), χ ̸= 1, χ ∈ Ĉl(f)
+
.

Presumably, L(1,χ) is always a transcendental number. We are unable to show
this. The value can be shown to be equal to π times a Q-linear form of logarithms
of algebraic numbers. Establishing the transcendence of such expressions is, at
present, slightly beyond the reach of transcendental number theory.

As will be seen below, the transcendence of L(1,χ) is a consequence of Schanuel’s
conjecture. This conjecture states that if x1, ..., xn are linearly independent numbers
over Q, then the transcendence degree of the field

Q(x1, ..., xn, ex1 , ..., exn)

is at least n. Although some progress has been made on some special cases of this
conjecture, it is far from being proved.

However, what we need is a “weaker” version of this conjecture. Baker’s theorem
asserts that if α1, ...,αn are algebraic numbers so that

logα1, ..., logαn

are linearly independent over Q, then they are linearly independent over Q.
Schanuel’s conjecture implies that

logα1, ..., logαn
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are algebraically independent if they are linearly independent over Q. It is this
assertion (or more precisely, a weaker version of it) that is needed to deduce that
L(1,χ) is itself transcendental whenever χ is a character of the ray class group of
K.

These results have several applications. The first is to establish transcendence of
certain Petersson inner products. The second is to special values of Artin L-series
attached to S3 extensions of Q. We state these results below.

Theorem 4. Let K be an imaginary quadratic field and f an ideal of the ring
of integers of K. For each non-trivial character χ of Cl(f), let fχ be the classical
normalized Hecke eigenform such that L(s,χ) = L(s, fχ). Suppose that χ2 ̸= 1. The
Petersson inner products (fχ, fχ)/π are transcendental numbers. Moreover, there
is at most one algebraic number in the list (fχ, fχ) as χ ranges over non-trivial

characters in Ĉl(f)
+

with χ2 ̸= 1.

We record the following application to special values of certain non-abelian L-
series.

Theorem 5. Let M/Q be a Galois extension with Galois group D2n, the dihedral
group of order 2n. Let ψ be an irreducible character of D2n of degree ̸= 1 and
L(s,ψ) the Artin L-series attached to ψ. Then L(1,ψ)/π is transcendental.

2. Group-theoretic preliminaries

We begin with a straightforward result from group theory which is an interesting
variant of Artin’s theorem on the linear independence of the irreducible characters
of a finite group.

Lemma 6. Let G be a finite group. Suppose that
∑

χ ̸=1

χ(R)uχ = 0

for all R ̸= 1 and all irreducible characters χ ̸= 1 of G. Then uχ = 0 for all χ.

Proof. This is Lemma 3 of [4] and is easily deduced using the orthogonality rela-
tions. !

3. A review of Ramachandra invariants and Baker’s theory

In this section, we recall and record several results due to Ramachandra [7] that
will be needed in the proof. Since f = f, complex conjugation acts on Cl(f) and we
denote by Cl(f)+ the equivalence classes of ideal classes under this action. We also
write ℜ(z) for the real part of a complex number z. Since Cl(f) is a finite group,
the character values are roots of unity.

Lemma 7. Let f ̸= 1 and suppose that f = f. There exist non-zero algebraic
numbers Aχ and multiplicatively independent units ϵ(R) (R ∈ Cl(f)+, R ̸= 1) such
that

L(1,χ) = πAχ

∑

R ̸=1,R∈Cl(f)+

δRℜ(χ(R)) log |ϵ(R)|

(with δR = 1 if R2 = 1 and 2 otherwise) for every non-trivial character χ of Cl(f).
Moreover, the formula implies Aχ = Aχ. If f ̸= 1 and f ̸= f, then L(1,χ)/π is a
Q-linear form in logarithms of algebraic numbers.
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Proof. This is a direct consequence of Theorems 8, 9 and 12 of [7]. In particular, the
corollary on page 134 of [7] gives the multiplicative independence of the units. !

In the discussion below, a pivotal role is played by the fundamental theorem of
Baker concerning linear forms in logarithms. We record this as

Lemma 8. If α1, ...,αn ∈ Q\{0} and β1, ...,βn ∈ Q, then

β1 logα1 + · · · + βn logαn

is either zero or transcendental. The latter case arises if logα1, ..., logαn are lin-
early independent over Q and β1, ...,βn are not all zero.

Proof. This is the content of Theorems 2.1 and 2.2 of [1]. Let us note that here
and later we interpret log as the principal value of the logarithm with the argument
lying in the interval (−π,π]. !

In particular, if logα1, ..., logαn are linearly independent over Q, then they are
linearly independent over Q.

Thus, an immediate application of Baker’s theory of linear forms in logarithms
leads to two corollaries in our context. The first is that the numbers log |ϵ(R)| as R
ranges over non-trivial elements of Cl(f)+ are linearly independent over Q since they
are linearly independent over Q. The second is that L(1,χ)/π is transcendental for
every non-trivial character χ of Cl(f).

As a further application of Lemma 8, we prove the following variant of a result
from [5].

Lemma 9. Let α1,α2, ...,αn be positive algebraic numbers. If c0, c1, ..., cn are al-
gebraic numbers with c0 ̸= 0, then

c0π +
n∑

j=1

cj logαj

is a transcendental number and hence non-zero.

Proof. This is Lemma 9 of [4] and is easily deduced from Baker’s theorem. !

4. Proof of Theorem 1

Suppose that ∑

χ ̸=1,χ∈Ĉl(f)
+

cχL(1,χ) = 0.

By Lemma 7, we have

L(1,χ) = πAχ

∑

R∈Cl(f)+,R ̸=1

δRℜ(χ(R)) log |ϵ(R)|,

where Aχ is a non-zero algebraic number. Hence, inserting this into our previous
formula,

∑

R∈Cl(f)+,R ̸=1

δR(log |ϵ(R)|)

⎛

⎝
∑

χ ̸=1

ℜ(χ(R))cχAχ

⎞

⎠ = 0.
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Since the log |ϵ(R)| (R ∈ Cl(f)+, R ̸= 1) are linearly independent over Q, by Baker’s
theorem, they are linearly independent over Q, and we deduce that

∑

χ ̸=1

ℜ(χ(R))cχAχ = 0

for every R ̸= 1, R ∈ Cl(f)+. Thus, for every R ̸= 1,
∑

χ ̸=1

χ(R)(cχAχ + cχAχ) = 0.

By Lemma 6, we have cχAχ + cχAχ = 0. Since Aχ ̸= 0, and Aχ = Aχ and cχ = cχ,
we conclude that cχ = 0 for every χ ̸= 1. This concludes the proof.

5. Proof of Theorem 3

As already noted in Lemma 7, L(1,χ)/π is a non-vanishing Q-linear form in
logarithms of algebraic numbers. By Baker’s theorem, it is transcendental. Suppose
now that f = f and L(1,χ1) = α, L(1,χ2) = β are both algebraic for two distinct

Hecke characters χ1,χ2 of Ĉl(f)
+
. Let f = βχ1 − αχ2. Then L(1, f) = 0. But

by Corollary 2, this implies f is identically zero. By the linear independence of
characters, we get χ1 = χ2, a contradiction. Hence, there is at most one character

χ of Ĉl(f)
+

such that L(1,χ) is algebraic.

6. Proof of Theorem 4

Before we embark on the proof of Theorem 4, we discuss briefly the relevant
portion of Rankin-Selberg theory. If f is a Hecke eigenform of weight k and level
N , there is an automorphic representation πf of GL2(AQ) corresponding to f such
that

L(s,πf ) = L(s + k − 1, f).

If k = 1 (as it will be in the case of interest to us), the factor corresponding to the
prime p (with p coprime to N) in the Euler product of L(s, f) is of the form

(
1 − αp

ps

)−1 (
1 − βp

ps

)−1

,

with |αp| = |βp| = 1. For primes p|N , the Euler factor is of the form
(

1 − αp

ps

)−1

with αp algebraic. The factor corresponding to the prime p (with (p, N) = 1) in
the Euler product of the symmetric square L-function of f L(s, Sym2(πf )) is

(
1 −

α2
p

ps

)−1 (
1 − αpβp

ps

)−1
(

1 −
β2

p

ps

)−1

.

The Euler factor for p|N is of the form F (p−s)−1 with F a polynomial of degree at
most 3 and with algebraic coefficients, satisfying F (0) = 1.

If χ is a non-trivial character of Cl(f), then there is a normalized Hecke eigenform
fχ of level Nχ and Nebentypus ϵ such that L(s, fχ) = L(s,χ). For primes p coprime
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to Nχ, the αp,βp can be described explicitly in terms of χ as follows. If p is inert
in K, then

(1 − αpT )(1 − βpT ) = 1 − χ((p))T 2.

If p splits as (p) = pp′, then

(1 − αpT )(1 − βpT ) = (1 − χ(p)T )(1 − χ(p′)T ).

Using the fact that αpβp = ϵ(p) and writing u ∼ v to mean that u/v is algebraic,
it is not difficult to see that

L(2, ϵ2)L(1,χ2) ∼ L(1, Sym2(πf )).

Since ϵ2 is even, L(2, ϵ2) is an algebraic multiple of π2 (see, for example, [6]). Writing
a ∼ b if a/b is an algebraic number, we have on the other hand, L(1, Sym2(πf )) ∼
(f, f)π2 from well-known formulas (see, for example, [9]). It follows that (f, f) ∼
L(1,χ2).

Although we verified this for p coprime to Nχ, the result is valid for all p,
though this is not essential for the proof of Theorem 4 since the finite number of
Euler factors introduce only a non-zero algebraic factor in the final evaluation of
L(1,χ2).

Thus,

(f, f) ∼ L(1,χ2).

Our theorem implies that (f, f)/π is transcendental, being a non-vanishing Q-linear
form in logarithms of algebraic numbers. Again, if we list these modular forms

fi arising in this way from Hecke characters Ĉl(f)
+
, then there are at most two

algebraic values of the inner products in this list. The proof is analogous to the one
given above for Theorem 3. This completes the proof of Theorem 4.

7. Proof of Theorem 5

By familiar group theory, ψ is induced from a character τ of the cyclic subgroup
Cn of order n (see, for example, pp. 37–38 of [8]). If we let K be the subfield
fixed by Cn, then K is a quadratic extension of Q. By properties of Artin L-series,
L(s,ψ) = L(s, τ ) where the latter is the Artin L-series attached to τ corresponding
to the abelian extension M/K. By Artin’s reciprocity law, there is a Hecke character
χ so that L(s, τ ) = L(s,χ). If K is an imaginary quadratic field, then by Theorem 3,
we have that L(1,χ)/π is transcendental. If K is a real quadratic field, then L(1,χ)
is a non-zero algebraic multiple of π2 (see p. 133 of [10]). In both cases, the assertion
of the theorem is established.

8. Concluding remarks

One can ask if similar results can be obtained for other algebraic number fields.
If K is a real quadratic field, then the result does not hold since, in this case, one
can show that L(1,χ) is an algebraic multiple of π2 (see, for example, [10]). Thus,
some caution is needed in formulating a general conjecture, and we relegate this to
future work.
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